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Statistical energy analysis as a tool for quantifying
sound and vibration transmission paths

By M. HEckL aAxD M. LEwIT
Institut fiir Technische Akustik, Technische Universitit, Berlin, (icruiny

PN

When a complex structure is excited in several different ways by different sources,
the sEA energy balance equations result in a set of linear equations that can be used
to calculate loss factors, coupling loss factors or net energy flows and incoming
powers. If certain symmetry relations are used, and/or if some prior knowledge
about the system is available, the set of linear equations is overdetermined and can
be solved by a least square technique.

A good indicator for the direction of the energy flow is the sEa temperature of the
subsystems.

Experiments and computer simulations performed on three plate arrangements
gave in general good results when the coupling was weak and there were more than
three modes in the frequency band of interest. Not so good results were obtained
when a small energy flow has to be measured as the difference of large quantities.
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Statistical energy analysis (SEA) was developed more than thirty years ago by Lyon,
Smith, Maidanik, and others as a tool for predicting the mean square velocities of
thin space-craft or aircraft structures when they are excited by sources (jet noise,
turbulent boundary layer, etc.) that are random in nature and therefore contain wide
frequency bands. A comprehensive description of the basic ideas, and some
applications of sEA, is given in a book by Lyon (1975).

As its forerunner, the heat conduction model for the vibration distribution in
buildings (Westphal 1957), sea consists of a system of linear equations that describe
the energy flow between substructures of a complex system. Because those equations
are manifestations of the law of conservation of energy they are very robust. Quite
often they give good results even if the usual requirements for their validity (large
number of modes, sufficient modal overlap, etc.) may be violated.

As sEA has been successful in the prediction of average vibration amplitudes and
sound pressures in space vehicles, airplanes, ships, buildings, large machines, etc., it
certainly is worthwhile to try to use it as a tool for solving the ‘inverse problem’; i.e.
to investigate the energy flow and the coupling propertles in existing structures. This
would be of considerable help for optimizing noise control. It would allow us to find
those paths that are responsible for the sound transmission in complex arrangements.
It also would be of considerable help in the appropriate design of additional damping
and isolation.

THE ROYAL A
SOCIETY /3

2. Possible applications of the ‘inverse’ SEA

In buildings, ships, vehicles, machines, etc., the sound is very often caused by
several sources and is transmitted along different paths. Because the sound powers
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Figure 1. Major sources of acoustic power in a ship.

P -— ®
2 Tpy R
v 77 7 z YAAAISIIY. 7
W M
®
PGI'H P ___’P32 PﬁleP%
Py N7
P
ﬁ 2 - ® Z
o Py Py s ::/@ Ps, Pos
/I'/T Zi b /// b
\ P P \
@ Py 53 ®

Figure 2. Acoustic energy flow between two adjacent rooms in a building. 1, Air-filled space (source
room); 2, air-filled space (receiver room); 3, partition; 4, 5, 7, 8, flanking walls; 6, air duct. The
arrows indicate the energy flow (not all possibilities are shown).

that are transmitted into a structure, appear explicitly in the sEA equations, it
should be possible to determine them if all the other quantities in the equations are
known. Thus if one wants, for example, to measure (see figure 1) the powers that are
generated by a ship propeller (£,), the main engine vibrations (P,), the exhaust pipe
vibrations (), the air-borne sound from the engine (£,), the radiated exhaust noise
(%), one should be able to do so by determining the mechanical energies

B, =m,v; or E,=(V/pc)p; (1)

in certain parts of the ship and inserting them into the sea equations. In (1) £, is the
mechanical energy in the vth subsystem of mass m, or volume V,. The parameters p,
¢ are the density and speed of sound in the air- or liquid filled volume V. The value
v? is the mean square velocity of the vth subsystem and p? the mean square sound
pressure. Obviously the powers can only be measured if all the loss factors and
coupling loss factors that appear in the sEA equations are known (which is hardly
ever the case).

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3. Idealization of a structure consisting of three subsystems (see equation (2)).

Figure 2 shows an example from building acoustics. The aim in this case may be
to quantify the powers P, that flow from one system to another to find out where
sound is mainly transmitted and where any further isolation is most effective.

In this paper we are interested in the transmission paths; i.e. the energy flow
quantities P, which in standard sga are usually expressed in terms of the coupling
loss factors #,,.

To measure these quantities in a three subsystem arrangement (see figure 3) we can
make the following sequence of experiments.

In the first experiment subsystem 1 is excited by a stationary random power P{V
and the average energies K are measured in each subsystem (v = 1,2,3). In the
second experiment subsystem 2 is excited by P{ and £® is determined. In a third
experiment one proceeds in a similar way. This allows us to set up the following
equation:

3
1
|2 El(fu)—l_ v El(//‘) uE(/") _“Pilt)i aw ¢
Nva 1c==21,¢.,(?7 k Niew BY) o vin O 2)

for v=1,23, n=12,3 6,=1; 6,=0 for v#pu.

V/IL
Here the superscript indicates the number of the experiment and the subscript gives
the number of the subsystem. w is the angular frequency, 9,4, 934, 934 are the loss
factors that characterize powers
I)Vd = un?vd]gv (3>
lost in each system. #,, are the coupling loss factors; they determine the energy flow
(power) from the vth subsystem to the k-subsystem; i.e.

As (2) consists of nine linear equations, one might argue that it allows to determine
nine unknown quantities; i.e. the six coupling loss factors 7,,, and the three internal
loss factors 7,, or the 7, values and the input powers P}, etc.

If the number of subsystems is not three, the same procedure which always give
n? linear equations can be applied (n = number of subsystems).

3. Short literature survey

The idea to use the sEa-equations to determine coupling loss factors is not new.

Phil. Trans. B. Soc. Lond. A (1994)
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Apart from some general remarks in Lyon’s book, Bies & Hamid (1980) seem to
have been the first to use sea in an inverse way. They realized that the accuracy of
the method is not very high, and therefore used an overdetermined system which
they solved by an error minimization technique.

Woodhouse (1981) also discussed the accuracy problem. He suggested modifying
the measured data in such a way that the final results do not violate the basic
conservation law (i.e. no negative coupling loss factors are allowed). Obviously the
modifications of the measured data were kept to a minimum. The numerical
procedures for this method are described in more detail by Hodges et al. (1987).
Clarkson & Ranky (1984) also found that in sitw measurements of internal and
coupling loss factors are of limited accuracy. They suggested an iteration scheme to
improve the results.

Lalor et al. (1989, 1990) combined the equations in (2) to get

E®  EW E® pm\  pom
N1 (% (1))+ N31 (‘%“%) = ”’%’
EO E®ED) T Gk )
E® g E® g PO
(i) + o (1) =
OB EPED) T oBd
In a similar way they found
EO B BEP EP\ _ PP
12 (Em E<2>) 82 (W E(z)) T OE®
2 2
(5b)
E® B B EP\ PP
i) i)~
B E(3> EY EP\  P®
and s (Em E<3>) T2 ( E<3>) wE®’
(5e)
EP B E® E®\ P®
() 1o ) 2

By adding the equations for 4 = 1,2,3 in (2) one finds for the internal loss factors
Ma B+ 990 B + 130 B = PP fo,
Ma B2+ 900 P + 134 BP = PP [, (5d)
Ma B 050 B + 130 B = PP o,

This way the coupling loss factors are separated from the internal loss factors and the
equations that have to be solved are much simpler. Ming et al. (1990) applied this
method to a car and found very reliable results.

Obviously the procedure underlying (5a-d) can also be applied to subsystems that
are excited in n different ways. In this case the basic nxn equations can be
rearranged so that there are n sets of (n— 1) equations containing the n— 1 coupling
loss factors. In addition there are n equations containing only the internal loss
factors. Measuring all the n®+n coefficients that are needed in these equations is a
very formidable task, because for each frequency band averages have to be taken
over the surface of each subsystem and also over several excitation points on each
subsystem.

Phil. Trans. R. Soc. Lond. A (1994)
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The rearrangement of (2) proposed by Lalor et al. simplifies the equations
somewhat, but it also shows that for a strongly coupled system the method becomes
very sensitive to the slightest error. When a system consists of strongly coupled
subsystems it vibrates more or less the same way whichever subsystems are
excited. Thus the ratio of energies in different experiments is practically equal —e.g.
EV/ED ~ E®/E® — and therefore the elements of the matrices of (5a—c) become
almost zero.

4. The thermodynamic analogy as an indicator for the direction of energy
flow

In the early publications on sEA it was mentioned already that there exists a
thermodynamic analogy where the energy per mode corresponds to temperature and
the coupling coefficient (which is not identical with the coupling loss factor)
corresponds to the heat conduction coefficient. With this analogy in mind one can
easily find the direction of energy flow in a construction composed of many
multimodal substructures, because energy always flows from the higher temperature
to the lower one. It is also obvious that subsystems are strongly coupled if their
temperatures are equal or almost equal.

To apply this general idea it is necessary to find the sga ‘temperature’ of the vth
substructure. It is given by

T,=B,/AN, (6)

Here the energy K, is given by (1) and AN, is the number of modes of the v-subsystem
within the frequency band of interest.

The measurement of the energies £, can be done by standard techniques; the
number of modes has to be estimated somehow. One method to obtain AN, would be
to measure the number of resonances for each subsystem in the frequency bands of
interest. When there are not too many resonances (average distance between two
resonances larger than three times the bandwidth of a resonance) this may give a
reasonably good value for AN,, even though it might not always be easy to decide
whether a small peak must be considered as a resonance or not.

Another method is to use the asymptotic relation (Cremer et al. 1973)

AN, =4m, Re{l/Z }Af. (6a)

Here Af is the frequency range (in Hertz) of interest and Z, is the input impedance
of the system, provided it is in the average not much influenced by boundary effects.
Re{1/Z,} may be taken from the literature ‘for the corresponding infinite system’,
or it may be measured.

Figure 4 shows in its upper part on a logarithmic scale the sEA temperature that
was measured on a three-plate rearrangement. Plate 2 was excited successively at
five points, and 18 to 30 response locations per plate were used. All the measured
input powers and energies were summed up. For the number of modes the
asymptotic value for plates was taken.

In its lower part figure 4 gives the net energy flow W, (see (8)) from one subsystem
to another one using the methods described later. The power coming from outside
was always P& =1 W, corresponding to 120 dB. Since W,,, W5, W,; are net energy
flows they may be positive or negative. To indicate their direction in the figure and
still retain the logarithmic scale, positive and negative energy flows are plotted in

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. Temperature and net energy flow in a three plate system.

different directions. The range below 75 dB is missing (it is not known accurately
anyway). The reference value always is Wy = 1072 W.

It can clearly be seen that the direction of the sea-measured energy flow agrees
with the sign of the temperature difference although the plates did not have a high
modal density. In the third octave centred at 200 Hz there were approximately three
modes, in the 2000 Hz third octave about 32.

Figures 5 and 6 show the results of computer simulations. In this case the modal
expansion of three coupled simply supported plates was used to calculate the mean
square velocities of the plates. The parameter of the plates were chosen in such a way
that the asymptotic number of modes was the same as in the example shown in figure
4 (0.058 to 0.064 modes Hz™1). The velocities for three different types of excitation
which were found this way were then introduced into (2) to obtain the net energy
flow. In the example shown in figure 5, plate 1 was excited, but because there was
a soft spring between 1 and 2 and a stiff spring between 1 and 3 the sEa temperature
T, is higher than 7, and consequently W,, is negative; i.e. there is a net energy
transport from 3 to 2. With respect to the energy flow from 1 to 2 the temperature
curves clearly indicate a flow from 1 to 2, which is quite plausible. The curve for W,,,
however, gives partly positive and partly negative values. This is probably due to the
fact that W, is rather small and therefore its measurement is not very reliable. In
computer simulated experiments, the energy flows can also be calculated directly to

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5. Temperature and net energy flow in a three plate system (computer simulation). Broken
lines are the true values based on modal expansion. Continuous lines are the sga calculations based
on simulated experiment.
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verify the sea-measured values. They are included in figures 5 and 6, and it can be
seen that the results are very good for the larger energy flows above 125 Hz.

In the example shown in figure 6 the centre plate 2 was excited and all coupling
springs were very stiff. The sea temperature curves indicate an energy flow from 2
to 3 and 2 to 1. This agrees with the curves for W,; and W, = —W,,. Above 125 Hz
T, is in general greater than 7} and therefore W, is mainly positive.

For frequencies below 125 Hz the curves for the net energy flow are rather erratic
because in this frequency range the system is well coupled and there are only two or
less modes in a third octave band.

In conclusion, this part of the paper shows that the measurement of the sEa
temperature (based on the asymptotic number of modes) yields a reasonably good
indication of the net energy flow direction. In addition, the sEa temperature
distribution helps to find those subsystems that are strongly coupled because their
SEA temperatures are more or less equal.

Measurements of the seEa temperature are especially useful when subsystems of
completely different types are connected. Examples are the sound pressure in a small

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. See figure 5.

space (e.g. the oil in a pipe) which is coupled to the vibrations of the surrounding
walls, or the in-plane waves in a plate that are coupled to the bending waves of
another (or the same) structure. In such cases the measured quantities such as root
mean squared velocities, accelerations, or pressures cannot be compared, but the sEA

P
T temperatures can.
»—1\ o
< 5. Measurements and computer simulations
>
@) = (a) Internal loss factors
[~ g For the measurement of internal loss factors the sEA equations are added in such
S5N @) a way that all terms containing the coupling loss factors are eliminated. For a three
O subsystem arrangement (5d) is obtained this way. In the general case of =
=w subsystems which are excited successively by n outside forces, the resulting set of
equations is
r 1
Z Nva En(/u) = Zl)l(tlf)ln 61//4' (7)

y=1
Here the number of different excitation situations has to range from x = 1 to u = n.
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Figure 7. Internal loss factors calculated by using equation (7). (@) Real experiments using three
plates. (b)) Computer simulation. (In both cases there were less than two modes per frequency band
below 125 Hz.)

This method was applied successfully by Ming et al. (1990). Other results are shown
in figure 7. They are reported by Lewit & Lehmkoster (1992).

In the ‘real’ experiment three wood fibre boards (see also figure 4), which had
different sizes and thicknesses but the same loss factors, were rigidly connected at the
edges and 9,4, 7,4, 34 Was measured by using (7). The ‘correct value’, which is also
given in figure 7, is based on the reverberation times at different frequencies of a
free-free bar that consisted of the same material. The computer simulation in figure
7 is based on a three plate configuration. In this case the mean square velocities were
calculated using a modal expansion. The results were then inserted into (7).

If one keeps in mind that the results are based on measured average levels that
have an accuracy of 1-2 dB, the agreement is surprisingly good.

(b) Net enerqy flow

In (2) the energy flow between two subsystems is expressed in terms of the loss
factor. But in the literature the basic sEa relations are also written as

g B+ 2 W, =P,
k#v
. (8)
or Nal,+ 2 a,(T,—1T,) = ZPV,in‘
k#v

Here W, is the net energy flow from v to k. The values 7, and 7}, are the sEa
temperatures given by (6). A very important aspect for the application of (8) is the
symmetry relation for the ‘conductances’ «,,; i.e.

Ay = Ay 9)

Phil. Trans. R. Soc. Lond. A (1994)
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In the basic sEa theory this relation is proved for coupled oscillators. If (8) is applied
to n different excitation situations, the result is

Nva ]{]1(/”) + 2 avk(Tl()ﬂ) - 71;0”)) =

Lpw s (10)
k#v [

e, in Yopt

Here P%;, is again the power that is transmitted from outside into the uth subsystem
(and only into this one) in the uth experiment.

Equation (10) is a system of n x n equations. By adding those relations that have
the same value of u, we again find (7). Because we used this relation already for
finding the internal loss factors, we can exclude n equations from (8). For the sake
of simplicity we choose to exclude those relations that have the incoming powers on
their right-hand side. This way we are left with n(n— 1) relations that do not contain
the incoming powers (which are sometimes hard to measure); i.e.

E avk(Tl(/#) - 71%0) = ﬂudEl(//l)' (11)
k#v

Here v and p range from 1 to » but v = u is excluded. Because of the symmetry
relation a,, = a,,, equation (11) is an overdetermined system of n(n — 1) equations for
sn(n—1) unknowns. Thus we would be allowed to exclude half of the equations in
(11). But as there is no simple rule for deciding which should be retained, it is better
to write (11) as

E al)k’Dlﬁ“;’C):m/)?VdMV (12)
k#v

and to solve this overdetermined system by a least square technique. In (11) the
relative temperature difference

v D)()/;C) — (711(/1,) . T}cﬂ))/’[’fjﬂ) (13)

was introduced, where AN, is again the number of modes in the vth subsystem. The
relative temperature difference constitutes a normalization which helps to avoid P, ;,
having a strong influence on the final results. Figure 8 shows results that were
obtained by this and other methods from the setup introduced in figure 4. The
quantity plotted in figure 8 is 9, = a,,/AN,,.

Phil. Trans. R. Soc. Lond. A (1994)
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Apart from experiments with the real three plate arrangement, several computer
simulations were made using the model that is briefly described in connection with
figures 5 and 6. By using the modal expansion the ‘true’ net energy flow could be
calculated and compared with the energy flow that is found from (12). The result is
shown in the upper part of figure 10. It can be seen that there is good agreement
between the ‘true value’ and the sgA calculation based on simulated experiments.

(c) Coupling loss factors

If the sEA equations are applied to several excitation situations (e.g. (2)) it is useful
to distinguish between the following two cases:

1. No assumption is made with respect to a relation between the coupling loss
factors #,, and 7,,. In this case one has to solve the full set of linear equations

Lpw (14)

S, in Yvp

Nva E’n()ﬂ) + Z (”VIC Ef/ﬂ) - ”kuEgcﬂ)) =
k#v w
with 1 <v <n, 1 < pu <n It can be seen that there are n*-equations and the same
number of unknowns. Thus the system can be solved either directly or after making
the Lalor-rearrangement that was used in (5a-d).
2. If, however, the reciprocity relation

N AN, = 1, ANy, (15)

which is rather fundamental in sEA, is applied, the number of unknowns is reduced
to n+1in(n—1), because, apart from the » values for ,,, we have to find only In(n—1)
coupling loss factors #,,.

There are several ways to treat this overdetermined system.

(i) Because the absolute measurement of P, ,, is generally of limited accuracy, all
equations containing this quantity are excluded (see Lewit & Petit 1991). This way
an overdetermined, homogeneous system of equations is obtained. As coefficients it

contains the energy ratios £, /K, With a least square technique

Noa/ Mret ANA 9,/ Ny

can be found. The quantity 7., for which one may take 3,, or any other loss factor,

is the only loss factor that cannot be calculated by this method which is based on a

homogeneous set of equations. Usually this is not a serious drawback because

relative loss factors contain most of the desired information. If this should not be the

case, at least one non-zero loss factor has to be found by an independent method.
(i1) The assumption (15) is equivalent to setting

771)](: = a‘vk:/ANV' (16)

This way — except for a factor — equation (12) is obtained and the methods described
there can be applied.

(iii) In principle one could exclude in(n— 1) equations from (14). But it is hard to
decide what can be excluded, without getting an ill-conditioned matrix or other
accuracy problems; therefore this method is not discussed further here.

Figure 8 shows results that were obtained by using the different methods. The data
are so close together that it did not seem necessary to indicate which curve belongs
to which method. In addition, figure 8 also gives a theoretical solid line (W. Wohle,
personal communication). It is based on the theoretical transmission coefficient of
two infinite plates that are connected at right angles.
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Figure 9. Comparison of coupling loss factors derived from computer simulations and theory
(thick line). Internal loss factor 0.01.

In figure 9 the results of computer simulations are plotted. In this case three plates
already introduced in figure 6 were coupled by rigid connectors; therefore a
theoretical coupling loss factor can be derived from Cremer’s (1953) formula for
sound bridges between two plates. The result is

1 1 1 1
= Re{—t with Ad=—+-—.
e = S[AF wm, {/} b z," 7,

Here Z,, Z, are the impedances of subsystems v and £ if they were infinite.

When the experimental data and the theoretical curve in figures 8 and 9 are
compared, one is confronted with the question whether the discrepancies are due to
shortcomings of the inverse sea method or due to the inapplicability of the
theoretical data to the experimental situation.

[t is our opinion that — even above 160 Hz when there are at least three modes per
third octave and the systems are weakly coupled —the theoretical data do not
adequately describe the experimental situation and therefore the discrepancies do
not indicate shortcomings of the method. The reasons for this opinion are as follows.

(@) The general trend of the theoretical and experimental curves is the same.

(b) Measurements (which are not repeated here) showed that within 1-2 dB the
measured coupling loss factors obeyed the reciprocity relation %, 945 95 =
N1 N3e 15 (Obviously this test was only made when (15) was not used).

(¢) The four different methods (see figure 9) gave practically the same results.

(d) In the computer simulation the modal expansion allows to calculate the ‘true’
net energy flow between two finite systems. It can also be used to simulate the
inverse sEA method which is based on squared quantities. In figure 10a comparison
is made for the arrangement from figure 6 but with very low internal loss factors
(0.0001). It shows that the net energy flow W, is determined rather exactly
although the measured coupling loss factors do not agree with the theoretical values.
Thus agreement with theoretical values that are based on infinite substructure
transmission coefficients cannot be required.
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Figure 10. (a) Net energy flow, W,,, of a three plate arrangement (computer simulation). o, True
value based on modal expansion; &, sEA calculation based on simulated experiment; %, SEA
calculation based on ‘theoretical’ coupling loss factor. (b) Coupling loss factor, #,, of a three plate
arrangement. , Result of simulated sEA calculation; ———, ‘theoretical’ (infinite) value.
Internal loss factor 0.0001.

(e) For an investigation of the applicability of ‘theoretical’ values it is very
revealing to study the influence of internal damping on the coupling loss factors.
There are two limiting cases: (i) when two simple degree of freedom resonators are
coupled, the coupling loss factors depend strongly on internal damping (see Lyon
1975 or Cremer et al. 1973); (ii) when two infinite subsystems (infinite number of
modes) are coupled, internal damping has only a second order influence on the
coupling loss factor. Practical situations are somewhere in between and indeed it
could be shown by computer simulations, that the coupling loss factors depend on
the internal damping of the receiving substructure whenever #,, > 7,,; i.e. when
there is strong coupling. The lower part of figure 10 gives an example of this type;
it shows an ‘experimental’ coupling loss factor which is well below the one plotted
in figure 9 because the internal loss factors are much smaller.

The upper part of figure 10 shows that the ‘theoretical’ coupling loss factor would
even lead to a net energy flow W,, that is larger than the incoming power of 1 W —
120 dB.

The examples shown in most of the graphs indicate that sea allows us to quantify

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 11. Condition number for different methods of measuring coupling loss factors. —&-—,
Equation (14) without relations containing P (n, = 6,n, = 6); —o—, equation (11) with 5,
known (n, = 6,7, = 3); %, equation (14) combined with equation (15) (n, =6,n, = 6); —e
equation (ba—d) (ny = 9,n, = 9). n, = number of equations, n, = number of unknowns.

5

the transmission paths in a complex system. But obviously there are also drawbacks.
Apart from the rather large experimental effort, a fundamental one is that small net
energy flows may be buried under larger ones. Figure 5 (lower part) contains an
example of this type. Here the curve for W, is rather erratic (and in disagreement
with the true energy flow calculation) although the temperatures clearly show that
energy must flow from plate 1 to plate 2. This result — and others not reported here
— shows difficulties that arise when there is a small energy flow, derived from a small
coupling loss factor, in the presence of a large energy flow from somewhere else into
the same subsystem. But as one is usually interested mainly in the important
transmission paths this is not too great a disadvantage.

(d) Condition number

Whenever one is dealing with an inverse problem, the question of ill-posedness
comes up. For the case of linear equations as they appear in SEa, a problem is ill-
posed when the condition number is high (see Stewart 1973). Thus it seems useful to
accompany calculations of the type reported here with the determination of the
condition number. Figure 11 shows several examples. It can be seen that at low
frequencies, when there are only a few modes, the condition number became high ; in
the remaining frequency range it was between 1 and 10.

It does not seem possible to give a fixed upper limit for the condition number. But
at least one can say that an error of p(%) in the input data leads at worst to an error
of €, p(%) in the final result (C, is the condition number). Thus for ¢, = 10 a 1 dB
(= 25%) error in the input data leads, in the worst case, to a result that deviates by
250% (= 4 dB) from the correct value. Such errors may appear high but, because
they are worst cases, it seems reasonable to assume that with some care the average
accuracy of the final results can be brought to 2-3 dB.

6. Conclusions

The ‘inverse use of seA constitutes a useful method for gaining information about
the transmission paths in complex structures.
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If only the direction of sound and vibration transmission is of interest, it is
sufficient to determine the sEa temperatures according to (6). The net energy flow
always is from the higher temperature to the lower one.

If two adjacent subsystems independent of source position have the same
temperature, they are well coupled. Temperatures can be compared even if they are
based on the mean square velocities of different wave types or on pressures in
different fluids or gases.

When sEa is used to calculate the net energy flow, or the internal loss factor, or the
coupling loss factors in a given complex system, then several experiments are
required. They involve the excitation with different source configurations and the
measurement of many mean square velocities (or pressures). The data obtained this
way are used to establish a set of linear equations for the unknown quantities. There
are several ways for solving this set of equations, especially when they form an
overdetermined system. This is the case when the symmetry relations (9) or (15) are
used or when certain quantities are known a priori from other independent
measurements.

Practical applications and computer simulations on arrangements consisting of
three plates generally gave good results when there were more than three modes in
a frequency band of interest and when the coupling was weak. Poor results for the
coupling quantities were obtained when (i) the corresponding subsystems were well
coupled (i.e. small temperature difference), (ii) the total energy flow into a certain
subsystem originates to a small part from one neighbouring system and to a large
part from another one. In the first case the coupling loss factor is not the appropriate
way to describe the situation (the temperature distribution would be better), the
second case is not of great practical relevance.

Comparison of measured coupling loss factors with theoretical values that are
based on calculation of the transmissibility of infinite substructures, should be made
only when the subsystems are not well coupled, i.e. when they have sufficient
damping. The conditions underlying such theoretical data are much more stringent
than the conditions for the applicability of SEA.

The condition number of the matrix that has to be inverted always should be
calculated, because it gives a good indication of the error sensitivity of the results.
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